

7th Step

With the steps selected up to now we have selected a **single spindle** riveting machine model, this will be sufficient for most requirements, if this is your case then you have finished.

If you need simultaneous riveting on **two equal spindles**, initially consult the maximum and minimum distances between the centres of the rivets and apply correction factor **Fc4** to the initial formulas, thus:

If the rivet is **solid** the general formula to be applied is:

$$Stc = 3,14 \cdot R^2 \cdot Fc1 \cdot Fc2 \cdot Fc4$$

If the rivet is **semi-tubular or tubular** the general formula to be applied is:

Stc =
$$3,14 \cdot (R^2 - r^2) \cdot Fc1 \cdot Fc2 \cdot Fc4$$

Double riveting head	Correction factor
	Fc4
	2

With the result obtained select the suitable **double spindle riveting head** model depending on the Corrected work section **Stc** value, in the following table:

Corrected work section. Stc	MACHINE MODEL
From 7 to 20	RA-6 DB
From 20 to 95	RA-12 DB
From 95 to 122	RA-14 DB
From 122 to 154	RA-16 DB
From 154 to 200	RA-18 DB
From 200 to 255	RA-20 DB

Remarks: For other alternatives or clearance distances for the spindle, consult with the factory.

AGUIRREGOMEZCORTA Y MENDICUTE, S.A.

Apalategi, 7 - 20.600 EIBAR - Guipúzcoa - Spain 263 / 263 / 243 (943) 12-16-08 / 12-16-12 = + 34 (943) 12-15-72 sales@agme.net

GUID QUICK т Ш MACHIN RIVETING ADIAL 2 4 **ECTING** ᆸ

Ш

1000

2 2

AGME Automated Assembly Solutions.

Apalategi, 7 - 20600 Eibar - Spain
Tel: +34 943 121 608 Fax: +34 943 121 572

This information is aimed at giving a **quick guide** to enable the most suitable type of riveting machine to be chosen. To make the selection the following **basic information** will be needed from the customer:

- 1. Type of rivet, solid, semi-tubular or tubular.
- 2. Final maximum head diameter required.
- 3. Resistance of material used for rivet.
- 4. Rivet material specification.
- 5. Free height of the spindle.
- 6. Single riveting or double head spindle.

Key in the known values into the general formula, to calculate the **Correct work section** (**Stc)**, this value will enable us to select **the most suitable model** in the table (step 5), by carrying out the steps as follows:

1ST Step

GUIDE

QUICK

MACHINE

RIVETING

RADIAL

4

ECTING

ᆸ

S

If the rivet is **solid** the general formula to be applied is:

$$Stc = 3,14 \cdot R^2 \cdot Fc1 \cdot Fc2$$

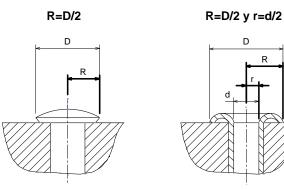
If the rivet is **semi-tubular or tubular** the general formula to be applied is:

$$Stc = 3,14 \cdot (R^2 - r^2) \cdot Fc1 \cdot Fc2$$

With: Stc: Correct work section.

R: Exterior radius of the rivet.r: Interior radius of the rivet hole.

Fc1: Correction factor 1 (obtained in step 3).


Fc2: Correction factor 2 (obtained in step 4).

2nd Step

Substitute the following values in the formula:

R if it is a solid rivet.

R and r if it is semi-tubular or tubular.

Solid Rivet

Semi-tubular or tubular rivet

3rd Step

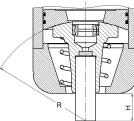
Select correction factor **Fc1** depending on the **type of rivet material and the composition**. See the table below:

Material	Resistance daN/mm²	Correction factor Fc1
Aluminium	~20	0,50
Bronze	~30	0,75
Steel	~40	1
Stainless steel	~80	2
Pre-treated steel	~120	3

4TH Step

Select the correction factor Fc2 depending on the shape of the head required. See table below:

Rivet head	shape	Correction factor Fc2
Flat		
Conical		1
Flat flanged		
Cambered		1,10
Flanged		1,10
Drawn		1,20
Conical sphere		1,50


5th Step

Select the suitable riveting machine model depending on the **corrected work section Stc** value obtained from the application of the formula:

Corrected work section. (Stc)	MACHINE MODEL
From 0,20 to 7	RA-4
From 7 to 20	RA-6
From 20 to 95	RA-12
From 95 to 122	RA-14
From 122 to 154	RA-16
From 154 to 200	RA-18
From 200 to 255	RA-20
From 255 to 490	RA-30

6th Step

Once the most suitable machine model has been chosen, it is necessary to ensure that the **free height of the tool** in the head is sufficient, otherwise it is necessary to change the components of the head radius in order to have a greater H distance.

MACHINE MODEL	Free height H		Correction factor (Fc3)
RA-4	Standard R65	20	1
RA-6	Optional R85	40	1,25
RA-12	Optional R105	60	1,65
RA-14	Standard R100	28	1
RA-16 RA-18	Optional R125	53	1,25
RA-20	Optional R150	78	1,65
RA-30	Standard R150	45	1
	Optional R200	95	1,25
	Optional R250	145	1,65

If the head is changed for a **new H distance** that is not standard, it will be necessary to **re-apply** a new correction factor Fc3 to the initial formulas, as follows:

If the rivet is **solid** the general formula to be applied is:

Stc =
$$3.14 \cdot R^2 \cdot Fc1 \cdot Fc2 \cdot Fc3$$

If the rivet is **semi-tubular or tubular** the general formula to be applied is:

Stc =
$$3,14 \cdot (R^2 - r^2) \cdot Fc1 \cdot Fc2 \cdot Fc3$$

and with the result obtained re-take step 5 to repeat the selection of the machine model.